Graded rings and modules

$$M = \bigoplus_{-\infty}^{\infty} M_{i}$$

s.t. $R_i M_j \subseteq M_{i+j}$.

A morphism of graded R-modules is an R-module homomorphism $Y: M \rightarrow N$ that preserves degree. i.e. $Y(M_d) \subseteq N_d$.

$$\mathbf{F}\mathbf{X}$$
: let $\mathbf{R} = \mathbf{k}[\mathbf{x}_1, \dots, \mathbf{x}_n]$ w/ standard grading.

1.)
$$T \subseteq R$$
 a homogeneous ideal, then R'_{I} is a graded module w/ grading determined by $R \rightarrow R'_{I}$.

<u>Geom. context</u>: A homogeneous ideal $I \subseteq k[x_{0},...,x_{h}]$ defines a closed algebraic set X in projective space. For d>>0, $\dim_{k}(I_{d})$ is the dimension of the space of homog. polynomials of deg d vanishing on X.

Def: let M be a f.g. graded module over
$$R = k[x_{1,...,}x_{n}]$$

w/ standard grading. The Hilbert function of M
is $H_{M}: \mathbb{R} \longrightarrow \mathbb{R}_{\geq 0}$ and is defined
 $H_{M}(s):= \dim_{k} M_{s}$

(the dims are finite since M is f.g. and thus Noetherian) We can define this more generally for modules/k-algebras, but for now we focus on modules/ $k(x_1,...,x_n)$.

EX: If
$$M = R = k[x_{1,...,x_{n}}]$$
 w/ standard grading,
 $H_{M}(s) = \begin{cases} 0 & \text{for } s < 0 \\ \binom{s+n-1}{n-1}, s \ge 0. \end{cases}$
 $\downarrow \# \deg s \underset{n = 1}{\text{monomials}}$

$$\underbrace{\mathsf{GX}}_{\mathsf{X}}: \qquad \mathsf{M} = \frac{\mathsf{k}[x,y]}{(x^2,y^3)}$$

$$M = M_0 \oplus M_1 \oplus M_2 \oplus M_3$$

$$\int_{1}^{1} \int_{x,y}^{1} \int_{xy,y^2}^{1} \int_{xy^2}^{1}$$
So $H_M(s) = \int_{2}^{1} for \ s = 0, 3$

$$\int_{0}^{1} for \ s = 1, 2$$

$$\int_{0}^{1} o therwise$$

$$FX: M = \frac{k(x, y, z)}{(x^4, x^2y, y^2)}, \text{ but deg } x = 1, \text{ deg } y = 2, \text{ deg } z = 3$$

Formula for dim_k M; ?

$$H_{M}(s)$$
 is additive. That is, if
 $0 \rightarrow M' \rightarrow M \rightarrow M'' \rightarrow 0$

is an exact sequence of graded modules, then

$$0 \to M'_{d} \to M_{d} \to M''_{d} \to 0$$

is an exact sequence of k-vector spaces, so

$$H_{\mathbf{M}}(d) = H_{\mathbf{M}'}(d) + H_{\mathbf{M}''}(d)$$

For f.g. modules, as soon as s is sufficiently large, H_m(s) behaves like a polynomial

Thm (Hilbert): If M is a finitely generated graded module over k(x₀,...,x_n) (standard grading), then H_M(s) agrees w/ a polynomial P_M(s) (of degree ≤ n) for s >>0. P_M(s) is called the <u>Hilbert polynomial</u> of M. <u>Pf sketch</u>: By induction on # of variables. Base case: M is a finite dimensional k vector space, so H_M(s)=0 for for s >>0.

Now say n≥0. Consider the map M→M given by m→xnm. This will increase the degree by one, so in order to make the map graded, we twistby -1, and get an exact sequence

$$0 \to N \to M(-1) \xrightarrow{\chi_n} M \longrightarrow M'_{\chi_n} M \longrightarrow 0$$

$$\uparrow_{kennel}$$

Thus, for each s, we get $H_{M_{X_{n}M}}(s) - H_{M}(s) + H_{M(-1)}(s) - H_{N}(s) = O$ $H_{\mu}(s-1)$ Notice that $x \not k = 0$ and $x \not (M(x)) = O$. Thus

Notice that $x_n K = 0$ and $x_n \binom{M}{x_n M} = 0$. Thus, both are $\frac{k(x_0, \dots, x_n)}{(x_n)} \stackrel{\sim}{=} \frac{k(x_0, \dots, x_{n-1})}{-modules}$, so by induction, they agree w/a poly. for s > >0.

Thus, so does
$$H_{M}(s) - H_{M}(s-1)$$
, and let $Q(s)$ be
the corresponding polynomial. That is, $Q(s) = H(s) - H(s-1)$
for $s \ge s_0$. Thus (exer!), $H(s) = Q(s) + H(s-1)$
is also a polynomial (in fact, of degree one larger). D

More geometric context:

A homogeneous ideal
$$T \subseteq k(x_0, ..., x_n)$$
 defines
a projective algebraic set $X \subseteq IP^n$.

Set
$$R = k(x_0, x_1, ..., x_n)/T$$
, the homogeneous coordinate
ving. Then
• deg $P_R(s) = dim X$.

For certain modules M, the Riemann-Roch Theoren computes the Hilbert polynomial, and the "Chern classes" of the corresponding sheaf are encoded in the coeffs of the Hilb. poly.