Graded rings and modules

Def: A graded ring is a ring R along $w /$ a direct sum decomposition

$$
R=R_{0} \oplus R_{1} \oplus \ldots \quad \text { sit. } \quad R_{i} R_{j} \subseteq R_{i+j}
$$

The nonzero elts $f \in R_{d}$ are homogeneous of degree d. I $\subseteq R$ is a homogeneous ideal if it'z generated by homogeneous elements.

Ex: $R=k\left[x_{1}, \ldots, x_{n}\right]=S_{0} \oplus S_{1} \oplus \ldots$ where S_{i} is the k-vector space of homogeneous polynomials of $\operatorname{deg} d$. i.e. $S_{0}=k, S_{1}$ is gen. by x_{1}, \ldots, x_{n}, S_{2} gen by $x_{1}^{2}, x_{1} x_{2}, x_{1} x_{3}, \ldots$ (as k-vector spaces).

Def: If $R=R_{0} \oplus R, \oplus \ldots$ is a graded ring, then a graded R-module is a module

$$
M=\underset{-\infty}{\oplus} M_{i}
$$

s.t. $R_{i} M_{j} \subseteq M_{i+j}$.

A morphism of graded R-modules is an R-module homomorphism $\varphi: M \rightarrow N$ that preserves degree. i.e. $\varphi\left(M_{d}\right) \subseteq N_{d}$.

Ex: let $R=k\left[x_{1}, \ldots, x_{n}\right]$ w/ standard grading.
1.) $I \subseteq R$ a homogeneous ideal, then R / I is a graded module $w /$ grading determined by $R \rightarrow R / I$.
2.) Let $M=R$, with $M_{-1}=R_{0}, M_{0}=R_{1}, M_{i}=R_{i+1}$. We denote this $M=R(1)$, "R twisted by one".

More generally, $M=R(d)$ is defined as $M_{i}=R_{d+i}$.

Geom. context: A homogeneous ideal $I \subseteq k\left[x_{0}, \ldots, x_{h}\right]$ defines a closed algebraic set X in projective space. For $d \gg 0, \quad \operatorname{dim}_{k}\left(I_{d}\right)$ is the dimension of the space of homog. polynomials of deg d vanishing on X.

Def: Let M be a f.g. graded module over $R=k\left[x_{1}, \ldots, x_{n}\right]$ $w /$ standard grading. The Hilbert function of M is $H_{M}: \pi \rightarrow \pi_{\geq 0}$ and is defined

$$
H_{M}(s):=\operatorname{dim}_{k} M_{s}
$$

(The dims are finite since M is f.g. and thus Noetherian) We can define this move generally for modules/k-algebras, but for now we focus on modules /k $\left.k, \ldots, x_{n}\right]$.

Ex: If $M=R=k\left[x_{1}, \ldots, x_{n}\right] w /$ standard grading,

$$
H_{M}(s)=\left\{\begin{array}{l}
0 \text { for } s<0 \\
\binom{\text { sen }}{n-1}, s \geq 0 .
\end{array}\right.
$$

1
$\chi_{\text {in }}{ }_{n}$ deg variables
Ex: $\quad M=k[x, y] /\left(x^{2}, y^{3}\right)$

So $H_{M}(s)= \begin{cases}1 & \text { for } s=0,3 \\ 2 & \text { for } s=1,2 \\ 0 & \text { otherwise }\end{cases}$

We cen also give non-standard grading to familiar rings/modules.

EX: $M=\frac{k[x, y, z]}{\left(x^{4}, x^{2} y, y^{2}\right)}$, but $\operatorname{deg} x=1, \operatorname{deg} y=2, \operatorname{deg} z=3$

Formula for $\operatorname{dim}_{k} M_{i}$?
$H_{M}(s)$ is additive. That is, if

$$
O \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow O
$$

is an exact sequence of graded modules, then

$$
0 \rightarrow M_{d}^{\prime} \rightarrow M_{d} \rightarrow M_{d}^{\prime \prime} \rightarrow 0
$$

is an exact sequence of k-vector spaces, so

$$
H_{m}(d)=H_{M^{\prime}}(d)+H_{m^{\prime}}(d)
$$

For f.g. modules, as soon as S is sufficiently large, $H_{\mu}(s)$ behaves like a polynomial

Thu (Hilbert): If M is a finitely generated graded module over $k\left[x_{0}, \ldots, x_{n}\right] \begin{gathered}\text { (standard } \\ \text { grading) }\end{gathered}$, then $H_{M}(s)$ agrees $w /$ a polynomial $P_{M}(s)$ (of degree $\leq n$) for $s \gg 0$.
$P_{M}(s)$ is called the Hilbert polynomial of M.

Pf sketch: By induction on $\#$ of variables.

Base case: M is a finite dimensional k vector space, so $H_{M}(s)=0$ for for $s \gg 0$.

Now say $n \geq 0$. Consider the map $M \rightarrow M$ given by $m \longmapsto x_{n} m$. This will increase the degree by one, so in order to make the map graded, we twist by -1 , and get an exact sequence

$$
0 \longrightarrow N \longrightarrow M(-1) \xrightarrow{x_{n}} M \longrightarrow M / x_{n} M \longrightarrow 0
$$

Thus, for each s, we get

$$
H_{M / x_{M} M}(s)-H_{M}(s)+\underbrace{H_{M}(s)}_{H_{M(-1)}^{\prime \prime}(s-1)}-H_{N}(s)=0
$$

Notice that $x_{n} K=0$ and $x_{n}\left(M / x_{n} M\right)=0$. Thus, both are $k\left[x_{0}, \ldots, x_{n}\right] /\left(x_{n}\right) \cong k\left[x_{0}, \ldots, x_{n-1}\right]$-modules, so by induction, they agree $w /$ a poly. for $s \gg 0$.

Thus, so does $H_{M}(s)-H_{M}(s-1)$, and let $Q(s)$ be the corresponding polynomial. That is, $Q(s)=H(s)-H(s-1)$ for $s \geq s_{0}$. Thus (exer!), $H(s)=Q(\delta)+H(s-1)$ is also a polynomial (in fact, of degree one larger). D

More geometric context:

A homogeneous ideal $I \subseteq k\left[x_{0}, \ldots, x_{n}\right]$ defines a projective algebraic set $X \subseteq \mathbb{P}^{n}$.

Set $R=k\left[x_{0}, x_{1}, \ldots, x_{n}\right] / I$, the homogeneous coordinate ring. Then

- $\operatorname{deg} P_{R}(s)=\operatorname{dim} X$.
- If $d=\operatorname{deg} P_{R}(s)$, then
$d!($ initial coetf) $)=$ "degree" of $X=\begin{aligned} & \text { \# of pts intersecting } \\ & \text { a general plane of } \\ & \text { complementary }\end{aligned}$ complementary dim

For certain modules M, the Riemann-Roch Theoren computes the Hilbert polynomial, and the "Chern classes" of the corresponding sheaf are encoded in the coifs of the Hill. poly.

